Dan Acosta-Kane developed the models used in Hoskin et al. (2019) Cognition paper. He has now revised them to make them more accessible.
To Run the code:
devtools::install_github("dan-ak/bayesian-pain")
library(BayesianPain)
data_loc <- system.file("extdata", "exp_1_data.csv", package="BayesianPain")
exp_data <- BayesianPain::center_scale(data.frame(read.csv( data_loc , header = TRUE)))
stan_data <- BayesianPain::create_stan_data(exp_data)
models <- BayesianPain::get_models(c(1,3,4,5,6))
output <- BayesianPain::fit_models(models, stan_data, iter=700, chains = 4)
output['DICs']
BayesianPain::get_parameters(output['fits'])
The code is available to download from here.
Comments